

Завод-производитель газоаналитического оборудования Адрес: 194156, Россия, г. Санкт-Петербург,

пр. Энгельса, д. 27, корп. 5 Тел: 8 (800) 234-66-90 Сайт: www.igm-pribor.ru E-mail: support@igm-pribor.ru

ГАЗОАНАЛИЗАТОРЫ СТАЦИОНАРНЫЕ ИГМ-12М РУКОВОДСТВО ПО ФУНКЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ МРБП.413347.005-01ФБ

Санкт-Петербург 2023 г.

СОДЕРЖАНИЕ

1	ОБЩИЕ СВЕДЕНИЯ	3
1.1		
1.2	Данные о предыдущих версиях руководства по безопасности	3
1.3	Другие документы, необходимые для эксплуатации прибора	3
2	ОПИСАНИЕ И РАБОТА	
2.1	Назначение изделия	3
2.2	Состав изделия	4
3	ТРЕБОВАНИЯ ФУНКЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ	4
3.1	Функция безопасности и безопасное состояние	4
3.2	1	5
3.3	Параметры функциональной безопасности	5
3.4	·	
3.5	Ограничения функциональной безопасности	6
4	КОНТРОЛЬНАЯ ПРОВЕРКА ФУНКЦИИ БЕЗОПАСНОСТИ	
4.1	Цель проверки функции безопасности	7
4.2	Полная проверка функции безопасности: Процедура № 1	7
4.3	Частичная проверка функции безопасности: Процедура № 2	8
5	ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	9
ПΡΙ	ИЛОЖЕНИЕ А ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ	10
ПΡΙ	ИЛОЖЕНИЕ Б ФОРМА ПРОТОКОЛА ПРОВЕРКИ	11

1 ОБЩИЕ СВЕДЕНИЯ

1.1 Общие сведения о руководстве по безопасности

- 1.1.1 Данное руководство по функциональной безопасности разработано в соответствии с ГОСТ Р МЭК 61508-2-2012.
- 1.1.2 Цель руководства по функциональной безопасности состоит в документальном оформлении информации, связанной с применяемыми газоанализаторами стационарными модельного ряда ИГМ-12М (далее газоанализаторы), которая необходима для обеспечения интеграции применяемого изделия в систему, подсистему или элемент, связанные с безопасностью, в соответствии с требованиями ГОСТ Р МЭК 61508-2-2012.
- 1.1.3 Основные термины и определения, используемые в настоящем руководстве по безопасности, приведены в Приложении А.

1.2 Данные о предыдущих версиях руководства по безопасности

		Встроенное
Дата	Описание	программное
		обеспечение
03.05.2019 г.	Начальная версия документа	Не ниже 5.65

1.3 Другие документы, необходимые для эксплуатации прибора

1.3.1 Перед началом эксплуатации газоанализаторов необходимо ознакомиться с руководством по эксплуатации МРБП.413347.005-01РЭ, главой 3.4 Правил эксплуатации электроустановок потребителей (ПЭЭП) а также требованиями главы 7.3 Правил устройства электроустановок («Электроустановки во взрывоопасных зонах»).

2 ОПИСАНИЕ И РАБОТА

2.1 Назначение изделия

- 2.1.1 Газоанализаторы стационарные ИГМ-12М предназначены для автоматического, непрерывного измерения в окружающей атмосфере концентрации взрывоопасных углеводородных газов, водорода, диоксида углерода, кислорода или токсичных газов (в зависимости от модификации) в окружающей атмосфере.
- 2.1.2 Газоанализаторы имеют световую сигнализацию и передает измерительную информацию внешним устройствам в виде цифрового сигнала (RS-485 MODBUS® и HART), унифицированного аналогового сигнала постоянного тока (4 ÷ 20) мА и посредством реле.
- 2.1.3 Область применения газоанализаторов взрывоопасные зоны классов 1 и 2 по ГОСТ IEC 60079-10-1-2011 (категории взрывоопасных смесей IIA, IIB, IIC по ГОСТ Р МЭК 60079-20-1-2011, согласно маркировке взрывозащиты), нефтяные и газовые месторождения, промышленные предприятия по переработке нефти и газа, газовые и нефтяные хранилища, химические производства, экологические службы и прочие объекты требующие контроля газовой обстановки.
- 2.1.4 Газоанализаторы ИГМ-12М в соответствии с ГОСТ Р МЭК 61508-2-2012 могут применяться в связанных с безопасностью системах в режимах работы с низкой частотой запросов и с высокой частотой запросов (до уровня SIL2 в одноканальной архитектуре).

2.2 Состав изделия

- 2.2.1 Газоанализаторы ИГМ-12М по функциональному назначению могут быть условно разделены на два узла:
 - узел обработки;
 - узел установки сенсора.
- 2.2.2 Узел установки сенсора предназначен для:
 - размещения газового сенсора и обеспечения его искробезопасного подключения к прибору;
 - хранения метрологических коэффициентов и настроек;
 - математической обработки сигналов, получаемых от газового сенсора;
 - вычисления концентрации контролируемого газа;
 - передачи данных о расчётной концентрации контролируемого газа в узел обработки.
- 2.2.3 Узел обработки предназначен для:
 - подключения внешних кабелей к ИГМ-12М;
 - обеспечения необходимых уровней электропитания для электронных плат газоанализатора;
 - формирования сигналов выходных цифровых и аналоговых интерфейсов;
 - получения и обработки управляющих сигналов от внешних устройств;
 - индикации значения измеренной концентрации на дисплее.
- 2.2.4 Включение прибора осуществляется автоматически при подаче питания. Подача пробы к газовому сенсору ИГМ-12М в штатном режиме осуществляется посредством свободной диффузии. Допускается принудительная подача пробы через адаптер ПГС.

3 ТРЕБОВАНИЯ ФУНКЦИОНАЛЬНОЙ БЕЗОПАСНОСТИ

3.1 Функция безопасности и безопасное состояние

- 3.1.1 Функцией безопасности является измерение концентрации газа и выдача информации с помощью интерфейса «токовая петля» (4-20) мА.
- 3.1.2 Передача информации посредством интерфейса HART не относится к функции безопасности, но может использоваться для конфигурации, считывания измеренных значений и диагностической информации. Коммуникационные устройства, поддерживающие HART-протокол, могут быть использованы для проведения контрольных проверок функции безопасности.
- 3.1.3 Передача информации посредством интерфейса RS-485 не относится к функции безопасности, но может использоваться для конфигурации, считывания измеренных значений и диагностической информации. Коммуникационные устройства, способные осуществлять связь по интерфейсу RS-485, могут быть использованы для проведения контрольных проверок функции безопасности.
- 3.1.4 Выдача газоанализаторами ИГМ-12М информации посредством релейной индикации (коммутации) не относится к функции безопасности.
 - 3.1.5 Архитектура канала преобразования X: 1001D.
- 3.1.6 Газоанализаторы ИГМ-12М могут находиться в трех состояниях: нормальное состояние, безопасное состояние, опасное состояние.
 - В нормальном состоянии газоанализаторы осуществляют преобразование сигнала об измеренной концентрации целевого компонента (газа) в унифицированный выходной сигнал постоянного тока от 4 до 20 мА с погрешностью, удовлетворяющей описанию типа

- средства измерений.
- В безопасном состоянии (безопасный отказ) значение унифицированного выходного сигнала постоянного тока интерфейса «токовая петля» газоанализатора ИГМ-12М меньше 3,5 мА или больше 20 мА.
- В опасном состоянии (опасный отказ) значение унифицированного выходного сигнала постоянного тока в диапазоне от 4мА до 20мА, но с погрешностью, превышающей указанную в описании типа средства измерений.

3.2 Требования к связанному оборудованию

- 3.2.1 Параметры внешнего блока питания и другого оборудования, подключаемого к газоанализаторам ИГМ-12М, должны соответствовать требованиям, приведенным в руководстве по эксплуатации МРБП.413347.005-01РЭ.
- 3.2.2 Оборудование, подключаемое к выходу аналогового интерфейса «токовая петля» газоанализаторов ИГМ-12М должно быть способно корректно интерпретировать значения аналогового сигнала тока в соответствии с таблицей индикации газоанализаторов ИГМ-12М, приведённой в руководстве по эксплуатации МРБП.413347.005-01РЭ.

3.3 Параметры функциональной безопасности

- 3.3.1 Частоты отказов газоанализаторов ИГМ-12М определяются посредством FMEDA-анализа по ГОСТ Р МЭК 61508-2-2012.
- 3.3.2 Точность преобразования измеренной концентрации контролируемого компонента (газа) в унифицированный выходной сигнал постоянного тока от 4 до 20 мА, обеспечиваемая функциональной безопасностью (погрешность безопасности), должна удовлетворять требованиям описания типа средства измерений для газоанализаторов ИГМ-12М.
- 3.3.3 Приведенные в таблице 1 интенсивности отказов соответствуют типичным условиям эксплуатации на промышленных предприятиях при средней температуре за длительный период времени 40 °C.
- 3.3.4 В случае более высокой средней температуры (выше +45°C) интенсивности отказов должны быть умножены на поправочный коэффициент 2.5, полученный на основе статистики. Подобный коэффициент должен использоваться, если имеют место частые изменения температуры.

Таблица 1 – Параметры функциональной безопасности для Хбез подключенного ПП

Показатель	Значение
Уровень полноты безопасности	УПБ 2 (SIL 2)
Устойчивость к отказам аппаратных средств (HFT)	0
Тип устройства	В
Режим запросов	с низкой частотой запросов;
	с высокой частотой запросов
Среднее время восстановления (МТТК), ч	8
Интервал времени между контрольными проверками (T _{proof}), ч	8760 (1 год)
Доля безопасных отказов (SFF), %	
Интенсивность обнаруженных опасных отказов (λ_{sd}), FIT $^{1)}$	30
Интенсивность необнаруженных опасных отказов (λ_{su}), FIT $^{1)}$	67
Интенсивность обнаруженных безопасных отказов (λ _{dd}), FIT ¹⁾	265
Интенсивность необнаруженных безопасных отказов (λ_{du}), FIT $^{1)}$	39
Средняя вероятность отказа при наличии запроса (PFD _{avg}) ²⁾	3,46·10 ⁻⁴
Средняя частота опасного отказа в час (PFH)	3,9·10 ⁻⁸
Примечания 1) FIT – единица измерения интенсивности отказов, равная 1·10 ⁻⁹ ч.	
2) Для Т _{proof} = 2 года.	

3.4 Требования к обслуживающему персоналу

- 3.4.1 Лица, обслуживающие систему безопасности, должны иметь подготовку, технические знания, опыт и квалификацию, соответствующие служебным обязанностям, которые они должны выполнять.
- 3.4.2 Подготовка, опыт и квалификация всех лиц, привлеченных к любым действиям, связанным с полным жизненным циклом безопасности системы, должны быть документированы.
- 3.4.3 К работе с газоанализаторами ИГМ-12М допускаются лица, изучившие руководство по эксплуатации МРБП.413347.005-01РЭ и прошедшие инструктаж по технике безопасности.
- 3.4.4 Газоанализаторы ИГМ-12М должны обслуживаться персоналом, имеющим квалификационную группу по электробезопасности не ниже II в соответствии с «Правилами по охране труда при эксплуатации электроустановок».

3.5 Ограничения функциональной безопасности

- 3.5.1 Эксплуатация газоанализаторов ИГМ-12М должна производиться в соответствии с руководством по эксплуатации МРБП.413347.005-01РЭ.
- 3.5.2 Не допускается применение газоанализаторов ИГМ-12М для измерения параметров сред, агрессивных по отношению к материалам конструкции газоанализаторов, контактирующим с измеряемой средой. Окружающая среда не должна приводить к разрушению металлических и/или пластиковых элементов корпуса газоанализаторов, а также приводить к разрушению или нарушению целостности изоляции кабелей, подводимых к газоанализатору в месте установки.
- 3.5.3 Диапазон рабочих температур: от минус 60 °C до плюс 60 °C, при условии средней температуры за длительный период времени 40 °C.

4 КОНТРОЛЬНАЯ ПРОВЕРКА ФУНКЦИИ БЕЗОПАСНОСТИ

ВНИМАНИЕ!

Операции, производимые во время подготовки к проверке функции безопасности газоанализаторов ИГМ-12М и во время самой функциональной проверки, не являются безопасными, могут оказывать влияние на подключенные к газоанализаторам устройства и узлы системы безопасности.

Без соответствующих мер по переводу системы безопасности в режим обслуживания, подобные действия могут приводить к аварийным ситуациям или к ложному срабатыванию противоаварийной системы.

Операции по проверке функции безопасности должны производиться только квалифицированным персоналом, ответственным за безопасность системы противоаварийной защиты и с уведомлением лиц, ответственных за объект установки системы безопасности на котором проводится проверка.

4.1 Цель проверки функции безопасности

- 4.1.1 Для подтверждения УПБ и выявления опасных необнаруженных отказов функция безопасности должна проверяться через соответствующие промежутки времени (интервал времени между контрольными проверками (Т_{ргооf})) посредством контрольной проверки. Выбор вида и объема проверки является ответственностью лица, эксплуатирующего устройство. Рекомендуемая форма протокола проверки приведена в Приложении Б.
- 4.1.2 Если результат проверки функции безопасности отрицательный, то вся измерительная система должна быть выведена из работы, а безопасное состояние процесса должно поддерживаться другими мерами.
 - 4.1.3 Для проведения проверки могут быть применены два типа проверок:
 - Процедура №1: газоанализатор остается в смонтированном состоянии и есть возможность подать соответствующую газовую смесь в точку подачи газа с помощью быстросъемного коннектора на объекте.
 - Процедура №2: устройство демонтировано и есть возможность подать соответствующую газовую смесь в точку подачи газа с помощью соответствующих испытательных устройств.
- 4.1.4 После завершения функционального теста должно быть восстановлено состояние, определенное для функции безопасности.

4.2 Полная проверка функции безопасности: Процедура № 1

- 4.2.1 Полная проверка функции безопасности осуществляет проверку формирования и передачи унифицированного выходного сигнала постоянного тока от 4мА до 20 мА и позволяет достичь диагностического покрытия 90%.
- 4.2.2 Осуществляется перевод системы безопасности объекта, на котором установлен контролируемый газоанализатор в режим «обслуживание».

- 4.2.3 Лица, ответственные за объект, на котором производится проверка ставятся в известность о проводимых работах.
- 4.2.4 Подаётся ПНГ (нулевой воздух или азот высокой чистоты) и ПГС с концентрацией от 25 до 75 % диапазона измерений определяемого компонента, используя калибровочную насадку из комплекта поставки газоанализатора. Если ПГС с определяемым компонентом в баллонах под давлением не производится, допускается подать заменяющую газовую смесь (газ-эквивалент) с использованием пересчетного коэффициента. Газ-эквивалент и пересчетный коэффициент указаны в паспорте на газоанализатор.
- 4.2.5 Во время подачи ПНГ или ПГС регистрируется значение тока интерфейса «токовая петля» и определяется соответствие концентрации подаваемой ПГС (ПНГ) и тока интерфейса. Данные заносятся в протокол проверки (Приложение Б).
- 4.2.6 Положительным результатом проверки является нахождение результата (регистрируемого тока интерфейса «токовая петля») в пределах погрешности согласно методике поверки газоанализаторов ИГМ-12М для подаваемой концентрации ПГС и температурных условий, соответствующих условиям проведения проверки.
- 4.2.7 Отрицательным результатом проверки является выход результата (регистрируемого тока интерфейса «токовая петля») за пределы погрешности, указанной в методике поверки газоанализаторов ИГМ-12М для подаваемой концентрации ПГС и температурных условий, соответствующих условиям проведения проверки.
- 4.2.8 После завершения функционального теста должно быть восстановлено состояние, определенное для функции безопасности.
- 4.2.9 В случае невозможности проведения функционального теста газоанализатора в смонтированном состоянии на объекте необходимо произвести демонтаж газоанализатора и осуществить его проверку на испытательном стенде (применяется процедура проверки №2). Процедура полной проверки функции безопасности X осуществляется в следующем порядке.

4.3 Частичная проверка функции безопасности: Процедура № 2

- 4.3.1 Частичная проверка функции безопасности осуществляет проверку формирования унифицированного выходного сигнала постоянного тока от 4мА до 20 мА, но не контролирует состояние тракта передачи сигнала до аппаратуры АСУТП и интерпретацию сигнала измерительными устройствами аппаратуры АСУТП. Частичная проверка позволяет достичь диагностического покрытия 60%.
- 4.3.2 Осуществляется перевод системы безопасности объекта, на котором установлен контролируемый газоанализатор в режим «обслуживание».
- 4.3.3 Лица, ответственные за объект, на котором производится проверка ставятся в известность о проводимых работах.
- 4.3.4 Газоанализатор демонтируется с места установки и переносится в помещение для проведения частичной проверки.
- 4.3.5 Подаётся ПНГ (нулевой воздух или азот высокой чистоты) и ПГС с концентрацией от 25 до 75 % диапазона измерений определяемого компонента, используя калибровочную насадку из комплекта поставки газоанализатора. Если ПГС с определяемым компонентом в баллонах под давлением не производится, допускается подать заменяющую газовую смесь (газ-эквивалент) с использованием пересчетного коэффициента. Газ-эквивалент и пересчетный коэффициент указаны в паспорте на газоанализатор.
- 4.3.6 Во время подачи ПНГ или ПГС регистрируется значение тока интерфейса «токовая петля» и определяется соответствие концентрации подаваемой ПГС (ПНГ) и тока интерфейса. Данные заносятся в протокол проверки (Приложение Б).

- 4.3.7 Положительным результатом проверки является нахождение результата (регистрируемого тока интерфейса «токовая петля») в пределах погрешности согласно методике поверки газоанализаторов ИГМ-12М для подаваемой концентрации ПГС и температурных условий, соответствующих условиям проведения проверки.
- 4.3.8 Отрицательным результатом проверки является выход результата (регистрируемого тока интерфейса «токовая петля») за пределы погрешности, указанной в методике поверки газоанализаторов ИГМ-12М для подаваемой концентрации ПГС и температурных условий, соответствующих условиям проведения проверки.
- 4.3.9 После завершения функционального теста должно быть восстановлено состояние, определенное для функции безопасности.

5 ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.1 Полная информация о начале применения и эксплуатации, настройке необходимых параметров и техническом обслуживании газоанализаторов ИГМ-12М приводится в руководстве по эксплуатации МРБП.413347. 005-01РЭ.
- 5.2 Все работы по монтажу и обслуживанию газоанализаторов во взрывоопасных зонах и связанные с открытием крышки корпуса газоанализатора должны проводиться при отключении цепей, подводимых к газоанализатору.
- 5.3 Газоанализаторы ИГМ-12М следует располагать в местах с наибольшей вероятностью появления контролируемого газа, согласно проектной документации объекта контроля.
- 5.4 Ввод газоанализаторов ИГМ-12М в эксплуатацию осуществляется в соответствии с проектной документацией на систему безопасности, в которую интегрируются газоанализаторы.
- 5.5 Техническое обслуживание (ТО) проводится с целью обеспечения нормальной работы газоанализаторов ИГМ-12М в течение срока эксплуатации. ТО должно проводиться подготовленными лицами, знающими правила техники безопасности при работе с электроустановками и изучившими руководство по эксплуатации МРБП.413347. 005-01РЭ.
- 5.6 Утилизация газоанализаторов ИГМ-12М должна проводиться согласно разделу 6 «Утилизация» руководства по эксплуатации МРБП.413347. 005-01РЭ.

ПРИЛОЖЕНИЕ А

Термины и определения

Функциональная безопасность (Functional Safety) – часть общей системы безопасности, обусловленная применением управляемого оборудования и системы управления и зависящая от правильности функционирования электрических/ электронных/ программируемых электронных систем (далее – Э/Э/ЭП системы), связанных с безопасностью, и других средств по снижению риска.

Полнота безопасности (safety integrity) – вероятность того, что система, связанная с безопасностью, будет удовлетворительно выполнять требуемые функции безопасности при всех оговоренных условиях в течение заданного периода времени.

УПБ (SIL – safety integrity level) – уровень полноты безопасности - дискретный уровень (принимающий одно из четырёх значений), определяющий требования к полноте безопасности для функции безопасности, который ставится в соответствии с Э/Э/ПЭ системам, связанным с безопасностью.

Опасное состояние (dangerous state**)** - состояние процесса, при котором функция безопасности не может быть выполнена.

Безопасное состояние (safe state**)** – состояние процесса, в котором достигается безопасность. Функция безопасности выполнена.

Функция безопасности (safety function) — функция, реализуемая системой, связанной с безопасностью, основанной на других технологиях, или внешними средствами снижения риска, которая предназначена для достижения или поддержания безопасного состояния процесса применительно к определенному опасному событию.

Отказ (failure) – прекращение способности функциональной единицы выполнять требуемую функцию.

Опасный отказ (dangerous failure) – отказ, который потенциально может перевести систему, связанную с безопасностью, в опасное или неработоспособное состояние.

Безопасный отказ (safe failure) – отказ, который не переводит систему, связанную с безопасностью, в опасное состояние или в состояние отказа при выполнении функции.

Обнаруженный отказ (detected failure) – отказ, выявленный с помощью диагностических проверок, контрольных проверок, вмешательства оператора (например, физического осмотра и ручной проверки) либо в ходе нормальной работы.

Необнаруженный отказ (undetected failure) – отказ, не выявленный с помощью диагностических проверок, контрольных проверок, вмешательства оператора (например, физического осмотра и ручной проверки) либо в ходе нормальной работы.

Отказобезопасность – свойства изделия, ориентированные на сохранение безопасности в случае отказа.

Архитектура MooN – приборная система безопасности или ее часть, выполненная из N независимых каналов, соединенных так, что M каналов достаточно для выполнения функции безопасности.

FMEDA (Failure Modes, Effect, and Diagnostics Analysis) – анализ видов и последствий отказов, их эффектов и диагностики. Применяется для расчёта показателей функциональной безопасности.

Контрольная проверка/проверка функции безопасности (proof test) — периодическая проверка, выполняемая для того, чтобы обнаружить отказы в системе, связанной с безопасностью, с тем чтобы при необходимости система могла быть восстановлена настолько близко к исходному состоянию, насколько это возможно в данных условиях.

FIT (failures in time) – вероятность отказа, представляемая как число отказов на миллиард часов. 1 FIT = $1*10^{-9}$ в час.

DC (diagnostic coverage) – охват диагностикой, %.

SFF (safety fail fraction) – доля безопасных отказов - свойство элемента, связанного с безопасностью, определяемое отношением суммы средних частот безопасных отказов и опасных обнаруженных отказов к сумме средних частот безопасных и опасных отказов.

HFT (hardware fault tolerance) – допустимое число отказов оборудования.

HFT = X означает, что X+1 является минимальным числом отказов, которые могут привести к потере функции безопасности.

PFDavg (probability of dangerous failure on demand) - средняя вероятность опасного отказа по запросу, средняя неготовность Э/Э/ПЭ системы, связанной с безопасностью, обеспечить безопасность, т.е. выполнить указанную функцию безопасности, когда происходит запрос.

PFH (average frequency of a dangerous failure per hour) - средняя частота опасного отказа в час, средняя частота опасного отказа Э/Э/ПЭ системы, связанной с безопасностью, выполняющей указанную функцию безопасности в течение заданного периода времени.

ПРИЛОЖЕНИЕ Б Форма протокола проверки

Идентификация	
Фирма/Проверяющее лицо	
Тип устройства/Код заказа	
Серийный номер устройства	
Дата начальной установки	
Версия встроенного ПО	
Пароль защиты настроек от записи	
(если применяется на конкретном объекте проверки)	
Дата последней проверки функции	
безопасности	

Осно	вание/объем проверки	
	Проверка контрольной точки, соответствующей 4мА для унифицированного выходного	
	сигнала постоянного тока интерфейса «токовая петля» газоанализаторов ИГМ-12М	
	Проверка контрольных точек измеряемой концентрации внутри диапазона преобразова-	
	ния газоанализатора ИГМ-12М от 4 мА до 20 мА	
	Проверка соответствия индикации газоанализатора ИГМ-12М таблице индикации состо-	
	яния работы согласно руководству по эксплуатации	
	Проверка параметров газоанализатора ИГМ-12М (опционально)	

Результат проверки		
Ожидаемое измеренное	Действительное значение	Результат проверки
значение		

Дата	Подпись
------	---------